Evaluation of Regression Models: Model Assessment, Model Selection and Generalization Error
نویسندگان
چکیده
منابع مشابه
teacher educator evaluation model
اگرکیفیت معلم کلاس برای بهبودیادگیری دانش آموزحیاتی است،پس کیفیت اساتیددانشجو-معلمان، یابه عبارتی معلمین معلمان نیزبرای پیشرفت آموزش بسیارمهم واساسی است.ناگفته پیداست که یک سیستم مناسب آموزش معلمان ،معلمین با کیفیتی را تربیت خواهدکرد.که این کار منجربه داشتن مدارس خوب، ودرنتیجه نیروی کارماهرتروشهروندبهتربرای جامعه خواهدشد. اساتیددانشجو-معلمان نقشی بسیارمهم را در سیستم اموزش معلمان درسراسرجهان ای...
Privacy-Preserving Evaluation of Generalization Error and Its Application to Model and Attribute Selection
Privacy-preserving classification is the task of learning or training a classifier on the union of privately distributed datasets without sharing the datasets. The emphasis of existing studies in privacy-preserving classification has primarily been put on the design of privacy-preserving versions of particular data mining algorithms, However, in classification problems, preprocessing and postpr...
متن کاملModel selection in quantile regression models
Lasso methods are regularization and shrinkage methods widely used for subset selection and estimation in regression problems. From a Bayesian perspective, the Lasso-type estimate can be viewed as a Bayesian posterior mode when specifying independent Laplace prior distributions for the coefficients of independent variables (Park and Casella, 2008). A scale mixture of normal priors can also prov...
متن کاملSensitivity based Generalization Error for Supervised Learning Problem with Applications in Model Selection and Feature Selection
Generalization error model provides a theoretical support for a classifier's performance in terms of prediction accuracy. However, existing models give very loose error bounds. This explains why classification systems generally rely on experimental validation for their claims on prediction accuracy. In this talk we will revisit this problem and explore the idea of developing a new generalizatio...
متن کاملVariable selection and model choice in geoadditive regression models.
SUMMARY Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning and Knowledge Extraction
سال: 2019
ISSN: 2504-4990
DOI: 10.3390/make1010032